111 research outputs found

    Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors

    Get PDF
    Skin conductivity (i.e., sweat) forms the basis of many physiology-based emotion and stress detection systems. However, such systems typically do not detect the biomarkers present in sweat, and thus do not take advantage of the biological information in the sweat. Likewise, such systems do not detect the volatile organic components (VOC’s) created under stressful conditions. This work presents a review into the current status of human emotional stress biomarkers and proposes the major potential biomarkers for future wearable sensors in affective systems. Emotional stress has been classified as a major contributor in several social problems, related to crime, health, the economy, and indeed quality of life. While blood cortisol tests, electroencephalography and physiological parameter methods are the gold standards for measuring stress; however, they are typically invasive or inconvenient and not suitable for wearable real-time stress monitoring. Alternatively, cortisol in biofluids and VOCs emitted from the skin appear to be practical and useful markers for sensors to detect emotional stress events. This work has identified antistress hormones and cortisol metabolites as the primary stress biomarkers that can be used in future sensors for wearable affective systems

    Fixed point dual carrier modulation performance for wireless USB

    Get PDF
    Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments

    Simultaneous mobile sink allocation in home environments with applications in mobile consumer robotics

    Get PDF
    This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment

    Energy-aware distributed routing algorithm to tolerate network failure in wireless sensor networks

    Get PDF
    Wireless Sensor Networks are prone to link/node failures due to various environmental hazards such as interference and internal faults in deployed sensor nodes. Such failures can result in a disconnection in part of the network and the sensed data being unable to obtain a route to the sink(s), i.e. a network failure. Network failures potentially degrade the Quality of Service (QoS) of Wireless Sensor Networks (WSNs). It is very difficult to monitor network failures using a manual operator in a harsh or hostile environment. In such environments, communication links can easy fail because of node unequal energy depletion and hardware failure or invasion. Thus it is desirable that deployed sensor nodes are capable of overcoming network failures. In this paper, we consider the problem of tolerating network failures seen by deployed sensor nodes in a WSN. We first propose a novel clustering algorithm for WSNs, termed Distributed Energy Efficient Heterogeneous Clustering (DEEHC) that selects cluster heads according to the residual energy of deployed sensor nodes with the aid of a secondary timer. During the clustering phase, each sensor node finds k-vertex disjoint paths to cluster heads depending on the energy level of its neighbor sensor nodes. We then present a k-Vertex Disjoint Path Routing (kVDPR) algorithm where each cluster head finds k-vertex disjoint paths to the base station and relays their aggregate data to the base station. Furthermore, we also propose a novel Route Maintenance Mechanism (RMM) that can repair k-vertex disjoint paths throughout the monitoring session. The resulting WSNs become tolerant to k-1 failures in the worst case. The proposed scheme has been extensively tested using various network scenarios and compared to the existing state of the art approaches to show the effectiveness of the proposed scheme

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler

    A novel downlink semi-persistent packet scheduling scheme for VoLTE traffic over heterogeneous wireless networks

    Get PDF
    Long Term Evolution (LTE) is becoming the first choice of Mobile Network Operators (MNOs) when constructing a wireless network infrastructure because of its high data rate, high throughput and low latency. These significant advancements are necessary for satisfying the delivery of a wide-range of mobile applications and managed network resources. However, deploying a new LTE network or a transition from current legacy cellular networks to LTE can take several years to roll out. In the meantime, working in a heterogeneous wireless communications network looks inevitable. This paper investigates Voice over LTE (VoLTE) Quality of Service (QoS) under a heterogeneous wireless communication scenario. The contributions of this paper are twofold. First, a novel Downlink (DL) semi-persistent scheduling scheme is proposed to reduce VoLTE end-to-end delay and increase system capacity. Second, an extensive network simulation model has been designed and implemented to evaluate the proposed scheme. The performance of the proposed scheme is compared with the performance of two relevant and well-known DL packet scheduling methods. The simulation results confirm that the proposed scheme is able to reduce VoLTE end-to-end delay and achieve a better system capacity than current methods, and maintain the desired VoLTE QoS

    Detailed examination of a packet collision model for Bluetooth Low Energy advertising mode

    Get PDF
    The aim of this paper is to investigate the amount of energy that is required to successfully transmit information inside the Bluetooth Low Energy (BLE) advertising packets. There are applications that require more than one BLE node to simultaneously transmit data. The BLE protocol utilizes a specific communication method termed advertising mode to perform unidirectional broadcasts of data from the advertising devices. However, with an increased number of BLE devices advertising simultaneously, there will be inevitable packet collisions from the advertising devices. This results in a waste of energy, specifically in low-power applications where lower consumption is desirable to minimize the need for battery replacements. This paper examines a packet collision model for the BLE advertising mode with the results validated using experimental data. Our analysis shows that when the throughput of the BLE network starts to fall due to an increase in the number of packet collisions, the energy consumption of the BLE nodes increase exponentially with respect to the number of nodes

    Comparison of low-power wireless communication technologies for wearable health-monitoring applications

    Get PDF
    Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems

    Texture features based microscopic image classification of liver cellular granuloma using artificial neural networks

    Get PDF
    Automated classification of Schistosoma mansoni granulomatous microscopic images of mice liver using Artificial Intelligence (AI) technologies is a key issue for accurate diagnosis and treatment. In this paper, three grey difference statistics-based features, namely three Gray-Level Co-occurrence Matrix (GLCM) based features and fifteen Gray Gradient Co-occurrence Matrix (GGCM) features were calculated by correlative analysis. Ten features were selected for three-level cellular granuloma classification using a Scaled Conjugate Gradient Back-Propagation Neural Network (SCG-BPNN) in the same performance. A cross-entropy is then calculated to evaluate the proposed Sigmoid input and the ten-hidden layer network. The results depicted that SCG-BPNN with texture features performs high recognition rate compared to using morphological features, such as shape, size, contour, thickness and other geometry-based features for the classification. The proposed method also has a high accuracy rate of 87.2% compared to the Back-Propagation Neural Network (BPNN), Back-Propagation Hopfield Neural Network (BPHNN) and Convolutional Neural Network (CNN)

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems
    • …
    corecore